Publications

Hitoshi Nakamoto
ResearcherID: H-5315-2012

Selected/highlighted papers in international journals

1. Selected for MicroCommentary of Molecular Microbiology

Sato, T., S. Minagawa, E. Kojima, N. Okamoto and H. Nakamoto
HtpG, the prokaryotic homolog of Hsp90, stabilizes a phycobilisome protein in the cyanobacterium Synechococcus elongatus PCC 7942.
Mol. Microbiol. 76: 576 – 589. 2010.
Commented by
J. Buchner, Mol Microbiol. 76:540-544, 2010.

2. Selected by Faculty of 1000

Kaneko, Y., R. Danev, K. Nagayama and H. Nakamoto
Intact Carboxysomes in a cyanobacterial cell visualized by Hilbert differential contrast transmission electron microscopy
J. Bacteriol. 188: 805-808. 2006.

3.Papers highlighted in the following paper by Jackson et al.

Tanaka, N. and H. Nakamoto
HtpG is essential for the thermal stress management in cyanobacteria.
FEBS Lett. 458: 117-123. 1999.
Hossain, M. M. and H. Nakamoto.
HtpG plays a role in cold acclimation in cyanobacteria.
Curr. Microbiol. 44: 291-296. 2002.
Jackson, S.E., C. Queitsch and D. Toft, Nat Struct Mol Biol. 11:1152-1155, 2004.

4.Recommended on Pubadvanced

Yokoyama, Y., A. Ohtaki, I. Jantan, M. Yohda and H. Nakamoto
Goniothalamin enhances the ATPase activity of the molecular chaperone Hsp90 but inhibits its chaperone activity.
J. Biochem. 157:161-168. 2015.

Papers with more than 100 citations per paper (based on Web of Science, Jan 2015)

1.Nakamoto, H. and L. Vígh
The small heat shock proteins and their clients.
Cell. Mol. Life Sci. 64:294-306. 2007.
2.Ihara, M., H. Nishihara, K.S. Yoon, O. Lenz, B. Friedrich, H. Nakamoto, K. Kojima, D. Honma, T. Kamachi, and I. Okura.
Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I
Photochem. Photobiol. 82:676-682. 2006.
3.Nakamoto, H. and J. C. A. Bardwell.
Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm.
Biochim. Biophys. Acta (Molecular Cell Research Special Issue). 1694: 111-119. 2004.
4.Edwards, G. E., H. Nakamoto, J. N. Burnell and M. D. Hatch
Pyruvate, Pi Dikinase and NADP-malate dehydrogenase in C4 photosynthesis: Properties and mechanism of light/dark regulation.
Ann. Rev. Plant Physiol. 36: 255-286. 1985.
5.Ku, M. S. B., R. K. Monson, R. O. Littlejohn, H. Nakamoto, D. B. Fisher and G. E. Edwards.
Photosynthetic characteristics of C3-C4 intermediate Flaveria species. I. Leaf anatomy, photosynthetic responses to O2 and CO2, and activities of key enzymes in the C3 and C4 pathways.
Plant Physiol. 71: 944-948. 1983.

Publications

Research papers in black

Review articles and book chapters has a red icon

Conference proceedings has a blue icon

1.
Hongsthong, A., J. Senachak and H. Nakamoto.
Genome- and proteome-wide analyses for targeted manipulation and enhancement of bio-products in cyanobacteria.
In: Rastogi, R.P., D. Madamwar and A. Pandey, eds., Algal Green Chemistry: Recent Progress in Biotechnology. Elsevier. 2016.
2.
Yokoyama, Y., A. Ohtaki, I. Jantan, M. Yohda and H. Nakamoto.
Goniothalamin enhances the ATPase activity of the molecular chaperone Hsp90 but inhibits its chaperone activity.
J. Biochem. 157:161-168. 2015.
3.
Nakamoto, H., K. Fujita, A. Ohtaki, S. Watanabe, S. Narumi, T. Maruyama, E. Suenaga, T.S. Misono, P.K. Kumar, P. Goloubinoff and H. Yoshikawa.
Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins.
J. Biol. Chem. 289:6110-6119. 2014
4.
Nakamoto, H. and H. Osada.
Molecular chaperones as drug targets.
(Editorial: [Hot Topic: Molecular Chaperones as Drug Targets])
Curr. Pharm. Des. 19:307-308. 2013.
5.
Miyata, Y., H. Nakamoto and L. Neckers.
The Therapeutic Target Hsp90 and Cancer Hallmarks
Curr. Pharm. Des. 19:347-365. 2013.
6.
H. Nakamoto.
Molecular chaperons and stress tolerance in cyanobacteria.
In: Srivastava, A.K., A.N. Rai and B.A. Neilan, eds., Stress Biology of Cyanobacteria: Molecular Mechanisms to Cellular Responses. pp. 113-144. CRC Press. 2013.
7.
Horváth, I., A. Glatz, H. Nakamoto, M.L. Mishkind, T. Munnik, Y. Saidi, P. Goloubinoff, J.L. Harwood and L. Vigh.
Heat shock response in photosynthetic organisms: membrane and lipid connections.
Prog. Lipid Res. 51:208-220. 2012.
8.
Minagawa, S., Y. Kondoh, K. Sueoka, H. Osada and H. Nakamoto.
Cyclic lipopeptide antibiotics bind to the N-terminal domain of the prokaryotic Hsp90, HtpG, to inhibit the chaperone activity.
Biochem. J. 435:237-246. 2011.
9.
Huq, S., K. Sueoka, S. Narumi, F. Arisaka and H. Nakamoto.
Comparative Biochemical Characterization of Two GroEL Homologs from the Cyanobacterium Synechococcus elongatus PCC 7942.
Biosci. Biotechnol. Biochem. 74: 2273 – 2280. 2010.
10.
Huq, S. and H. Nakamoto.
Heat shock proteins and acquisition of thermotolerance in plants.
In: M. Pessarakli, ed., Handbook of Plant and Crop Stress. 3rd ed. Chapter 20: pp. 519-534. CRC Press. 2010.
11.
Sato, T., S. Minagawa, E. Kojima, N. Okamoto and H. Nakamoto.
HtpG, the prokaryotic homolog of Hsp90, stabilizes a phycobilisome protein in the cyanobacterium Synechococcus elongatus PCC 7942.
Mol. Microbiol. 76: 576 – 589. 2010.
12.
Sueoka, K., T. Yamazaki, T. Hiyama and H. Nakamoto.
The NADPH thioredoxin reductase C functions as an electron donor to 2-Cys peroxiredoxin in a thermophilic cyanobacterium Thermosynechococcus elongatus BP-1.
Biochem. Biophys. Res. Commun. 380:520-524. 2009.
13.
Sakthivel, K., T. Watanabe and H. Nakamoto.
A small heat shock protein confers stress tolerance and stabilizes thylakoid membrane proteins in cyanobacteria under oxidative stress.
Arch. Microbiol. 191:319-328. 2009.
14.
Sakthivel, K., L.C. Rai and H. Nakamoto.
Role of small heat shock protein and DNA-binding protein from starved cells, Dps, in oxidative stress management.
Curr. Top. Biochem. Res. 10: 79-86. 2008.
15.
Sato, S., M. Ikeuchi and H. Nakamoto.
Expression and function of a groEL paralog in the thermophilic cyanobacterium Thermosynechococcus elongatus under heat and cold stress.
FEBS Lett. 582:3389-3395. 2008.
16.
Saito, M., S. Watanabe, H. Yoshikawa and H. Nakamoto.
Interaction of the molecular chaperone HtpG with uroporphyrinogen decarboxylase in the cyanobacterium Synechococcus elongatus PCC 7942
Biosci. Biotechnol. Biochem. 72:1394-1397. 2008.
17.
Vigh, L., H. Nakamoto, J. Landry, A. Gomez-Munoz, J.L. Harwood and I. Horvath.
Membrane regulation of the stress response from prokaryotic models to Mammalian cells.
Ann. N. Y. Acad. Sci. 1113:40-51. 2007.
18.
Kojima, K. and H. Nakamoto.
A novel light- and heat-responsive regulation of the groE transcription in the absence of HrcA or CIRCE in cyanobacteria.
FEBS Lett. 581: 1871-1880. 2007.
19.
Nakamoto, H. and L. Vígh.
The small heat shock proteins and their clients.
Cell. Mol. Life Sci. 64:294-306. 2007.
20.
Watanabe, S., T. Kobayashi, M. Saito, M. Sato, K. Nimura-Matsune, T. Chibazakura, S. Taketani, H. Nakamoto and H.Yoshikawa.
Studies on the role of HtpG in the tetrapyrrole biosynthesis pathway of the cyanobacterium Synechococcus elongatus PCC 7942
Biochem. Biophys. Res. Commun. 352:36-41. 2007.
21.
Ihara, M., H. Nakamoto, T. Kamachi, I. Okura and M. Maeda.
Photoinduced Hydrogen Production by Direct Electron Transfer from Photosystem I Cross-linked with Cytochrome c3 to [NiFe]-Hydrogenase.
Photochem. Photobiol. 82: 1677–1686. 2006.
22.
Kojima, K., T. Suzuki-Maenaka, T. Kikuchi and H. Nakamoto.
Roles of the cyanobacterial isiABC operon in protection from oxidative and heat stresses.
Physiol. Plant. 128: 507-519. 2006.
23.
Nakamoto, H. and D. Honma.
Interaction of a small heat shock protein with light-harvesting cyanobacterial phycocyanins under stress conditions.
FEBS Lett. 580: 3029-3034. 2006.
24.
Ihara, M., H. Nishihara, K.S. Yoon, O. Lenz, B. Friedrich, H. Nakamoto, K. Kojima, D. Honma, T. Kamachi, and I. Okura.
Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I
Photochem. Photobiol. 82:676-682. 2006.
25.
Kaneko, Y., R. Danev, K. Nagayama and H. Nakamoto.
Intact Carboxysomes in a cyanobacterial cell visualized by Hilbert differential contrast transmission electron microscopy
J. Bacteriol. 188: 805-808. 2006.
26.
Kojima, K. and H. Nakamoto.
Post-transcriptional control of the cyanobacterial hspA heat-shock induction.
Biochem. Biophys. Res. Commun. 331: 583-588. 2005.
27.
Nitta, K., N. Suzuki, D. Honma, Y. Kaneko and H. Nakamoto.
Ultrastructural stability under high temperature or intensive light stress conferred by a small heat shock protein in cyanobacteria.
FEBS Lett. 579: 1235-1242. 2005.
28.
Kojima, K. and H. Nakamoto.
Constitutive expression of small heat shock protein in an htpG disruptant of the cyanobacterium Synechococcus sp. PCC 7942.
Curr. Microbiol. 50:272-276. 2005.
29.
Kojima, K. and H. Nakamoto.
Both CP43’ and flavodoxin play a role in protection from heat and oxidative stresses.
In: van der Est, A. and D. Bruce, eds., Photosynthesis: Fundamental Aspects to Global Perspectives. Vol. 2, pp.709 – 711. ACG Publishing. 2005.
30.
Asadulghani, K. Nitta, Y. Kaneko, K. Kojima, H. Fukuzawa, H. Kosaka, and H. Nakamoto.
Comparative analysis of hspA mutantandwild type Synechocystis sp. PCC 6803 under salt stress: Evaluation of the role of hspA in salt stress management.
Arch. Microbiol. 182: 487-497. 2004.
31.
Nakamoto, H. and J. C. A. Bardwell.
Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm. 
In: Economou T. and R.E. Dalbey, eds., Protein Export/Secretion in Bacteria.
Biochim. Biophys. Acta (Molecular Cell Research Special Issue). 1694: 111-119. 2004.  
32.
Ehira, S., T. Hamano, T. Hayashida, K. Kojima, H. Nakamoto, T. Hiyama, M. Ohmori, S. Shivaji and N. Sato.
Conserved temperature-dependent expression of RNA-binding proteins in cyanobacteria with different temperature optima. 
FEMS Microbiol. Lett. 225: 137-142. 2003.
33.
Nakamoto, H., M. Suzuki and K. Kojima.
Targeted inactivation of the hrcA repressor gene in cyanobacteria.
FEBS Lett. 549: 57-62. 2003.
34.
Asadulghoni, Y. Suzuki, and H. Nakamoto.
Light plays a key role in the modulation of heat shock response in the cyanobacterium Synechocystis sp. PCC 6803.
Biochem. Biophys. Res. Commun. 306: 872-879. 2003.
35.
Hossain, M. M. and H. Nakamoto.
Role of the cyanobacterial HtpG in protection from oxidative stress.
Curr. Microbiol. 46: 70-76. 2003.
36.
Kojima, K. and H. Nakamoto.
Specific binding of a protein to a novel DNA element in the cyanobacterial small heat-shock protein gene.
Biochem. Biophys. Res. Commun. 297: 616-624. 2002.
37.
Hossain, M. M. and H. Nakamoto.
HtpG plays a role in cold acclimation in cyanobacteria.
Curr. Microbiol. 44: 291-296. 2002.
38.
Nakamoto, H., M.M. Hossain, N. Suzuki and K. Kojima.
Heat shock proteins play a role in both high and low temperature stresses in cyanobacteria.
PS2001 Proceedings, 12th International Congress on Photosynthesis. S35-023, pp.1 – 5. CSIRO Publishing. 2001.
39.
Nakamoto, H., N. Tanaka and N. Ishikawa.
A novel heat shock protein plays an important role for the thermal stress management in cyanobacteria.
J. Biol. Chem. 276: 25088-25095. 2001.
40.
Nakamoto, H., N. Suzuki and S. K. Roy.
Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria.
FEBS Lett. 483: 169-174. 2000.
41.
Hiyama, T., K. Yumoto, A. Satoh, M. Takahashi, T. Nishikido, H. Nakamoto, K. Suzuki and T. Hiraide.
Chromatographic separation of a small subunit (PsbW/PsaY) and its assignment to photosystem I reaction center.
Biochim. Biophys. Acta (Bioenergetics). 1459:117-124. 2000.
42.
Tanaka, N. and H. Nakamoto.
HtpG is essential for the thermal stress management in cyanobacteria.
FEBS Lett. 458: 117-123. 1999.
43.
Roy, S. K., T. Hiyama and H. Nakamoto.
Purification and characterization of the 16-kDa heat-shock-responsive protein from the thermophilic cyanobacterium Synechococcus vulcanus, which is an α-crystallin-related, small heat shock protein.
Eur. J. Biochem. 262:406-416. 1999.
44.
Nakamoto, H. and T. Hiyama.
Heat Shock Proteins and Temperature Stress.
In: M.Pessarakli, ed., Handbook of Plant and Crop Stress. 2nd ed. Chapter 17: pp. 399-416, Marcel Dekker. 1999.
45.
Nakamoto, H. and M. Hasegawa.
Targeted inactivation of the gene psaK encoding a subunit of photosystem I from the cyanobacterium Synechocystis sp. PCC 6803.
Plant Cell Physiol. 40: 9-16. 1999.
46.
Roy, S. K. and H. Nakamoto.
Cloning, characterization, and transcriptional analysis of a gene encoding an α-crystallin-related, small heat shock protein from the thermophilic cyanobacterium Synechococcus vulcanus.
J. Bacteriol. 180: 3997-4001. 1998.
47.
Tanaka,N., T. Hiyama and H. Nakamoto.
Cloning, characterization, and fun.ctional analysis of groESL operon from thermophilic cyanobacterium Synechococcus vulcanus.
Biochim. Biophys. Acta (Protein Structure and Molecular Enzymology), 1343: 335-348. 1997.
48.
Nakamoto, H. and T. Suzuki.
Cloning, characterization, and transcriptional studies of ferredoxin genes from the mesophilic cyanobacterium Synechocystis sp. PCC 6803 and thermophilic cyanobacterium Synechococcus vulcanus.
Physiol. Plant. 101: 199-205. 1997.
49.
Furuki, M., N. Tanaka, T. Hiyama and H. Nakamoto.
Cloning, characterization, and functional analysis of groEL-like gene from thermophilic cyanobacterium Synechococcus vulcanus, which does not form an operon with groES.
Biochim. Biophys. Acta (Protein Structure and Molecular Enzymology), 1294: 106-110. 1996.
50.
Nakamoto, H.
Some studies with mutant strains in which specific genes encoding subunits of photosystem I were inactivated.
In: P. Mathis, ed., Photosynthesis: From Light to Biosphere. Vol. III, pp.513-516. Kluwer Academic Publishers. 1996.
51.
Nakamoto, H.
Targeted inactivation of the gene psaI encoding a subunit of photosystem I of the cyanobacterium Synechocystis sp. PCC6803.
Plant Cell Physiol. 36: 1579-1587. 1995.
52.
Sue, S., K. Sugiya, M. Furuki, T. Shimizu, Y. Inoue, H. Nakamoto and T. Hiyama.
Nucleotide sequence of the psaD gene from the thermophilic cyanobacterium Synechococcus vulcanus.
Photosynth. Res. 46: 265-268. 1995.
53.
Chitnis, V. P., Q. Xu, L. Yu, J. H. Golbeck, H. Nakamoto, D. -L. Xie and P. R. Chitnis.
Targeted inactivation of the gene psaL encoding a subunit of photosystem I of the cyanobacterium synechocystis sp. PCC 6803.
J. Biol. Chem. 268: 11678-11684. 1993.
54.
Nakamoto, H and T. Hiyama.
Comparison of photosystem I complex isolated with different methods.
In: N. Murata, ed., Research in Photosynthesis.Vol.1, pp. 613-616. Kluwer Academic Publishers. 1992.
55.
Hiyama, T., T. Oya, S. Kobayashi, M. Furuki, T. Shimizu, M. Senda and H. Nakamoto.
The subunit stoichiometry of photosystem I reaction center. In: N. Murata, ed., Research in Photosynthesis. Vol.1, pp.621-624. Kluwer Academic Publishers. 1992.
56.
Senda, M., T. Sasaki, H. Nakamoto and T. Hiyama.
Applications of capillary electrophoresis to redox proteins and nucleotides in photosynthetic system.
Anal. Sci. 7: 1545-1548. 1991.
57.
Nakamoto, H.
Regulation of pyruvate, orthophosphate dikinase from maize leaves. Magnesium-dependent dimer-tetramer interconversion. In: M. Baltscheffsky, ed., Current Research in Photosynthesis. Vol. 4, pp. 183-186. Kluwer Academic Publishers. 1990.
58.
Nakamoto, H. and G. E. Edwards.
Effect of magnesium, manganese and phosphate on catalysis of pyruvate, orthophosphate dikinase from maize.
Plant Physiol. Biochem. 28: 553-559. 1990.
59.
Imaizumi, N., H. Usuda, H. Nakamoto and K. Ishihara.
Changes in the rate of photosynthesis during grain filling and the enzymatic activities associated with the photosynthetic carbon metabolism in rice panicles.
Plant Cell Physiol. 31: 835-843. 1990.
60.
Sugiharto, B., K. Miyata, H. Nakamoto, H. Sasakawa and T. Sugiyama.
Regulation of expression of carbon-assimilating enzymes by nitrogen in maize leaf.
Plant Physiol. 92: 963-969. 1990.
61.
Nakamoto, H. and S. -Y. Park.
Light activation of pyruvate, orthophosphate dikinase in maize mesophyll chloroplasts.
Plant Cell Physiol. 31: 1-6. 1990.
62.
Murata, T., R. Ohsugi, M. Matsuoka and H. Nakamoto.
Purification and characterization of NAD malic enzyme from leaves of Eleusine coracana and Panicum dichotomiflorum.
Plant Physiol. 89: 316-324. 1989.
63.
Nakamoto, H., L. -G. Sundblad, P. Gardeström and E. Sundbom.
Far-red stimulated long-lived luminescence from barley protoplasts.
Plant Sci. 55: 1-7. 1988.
64.
Suzuki, S., H. Nakamoto, M. S. B. Ku and G. E. Edwards.
Influence of leaf age on photosynthesis, enzyme activity, and metabolite levels in wheat.
Plant Physiol. 84: 1244-1248. 1987.
65.
Nakamoto, H. and G. E. Edwards.
Effect of adenine nucleotides on the reaction catalyzed by pyruvate, orthophosphate dikinase in maize.
Biochim. Biophys. Acta. 924: 360-368. 1987.
66.
Nakamoto, H., M. N. Sivak and D. A. Walker.
Sudden changes in the rate of photosynthetic oxygen evolution and chlorophyll fluorescence in intact isolated chloroplasts: The role of orthophosphate.
Photosynth. Res. 11: 119-130. 1987.
67.
Nakamoto, H. and G. E. Edwards.
Light activation of pyruvate, Pi dikinase and NADP-malate dehydrogenase in mesophyll protoplasts of maize: Effect of DCMU, Antimycin A, CCCP, and Phlorizin.
Plant Physiol. 82: 312-315. 1986.
68.
Edwards, G. E., H. Nakamoto, J. N. Burnell and M. D. Hatch.
Pyruvate, Pi Dikinase and NADP-malate dehydrogenase in C4 photosynthesis: Properties and mechanism of light/dark regulation.
Ann. Rev. Plant Physiol. 36: 255-286. 1985.
69.
Aoyagi, K. and H. Nakamoto.
Pyruvate, Pi dikinase in bundle sheath strands as well as in mesophyll cells in maize leaves.
Plant Physiol. 78: 661-664. 1985.
70.
Nakamoto, H.
Regulation of the activation of pyruvate, Pi dikinase and NADP-malate dehydrogenase in maize.
Ph.D. thesis, Washington State University, 1984.
71.
Nakamoto, H. and G. E. Edwards.
Regulation of the activation of pyruvate, Pi dikinase and NADP-malate dehydrogenase in maize.
In: C. Sybesma, ed., Advances in Photosynthesis Research. Vol.3, pp. 601-604. Martinus Nijhoff/Dr.W.Junk Publishers. 1984.
72.
Nakamoto, H. and G. E. Edwards.
Dark activation of NADP-malate dehydrogenase in maize leaf discs.
Z. Pflanzenphysiol. 114: 315-320. 1984.
73.
Nakamoto, H., M. S. B. Ku and G. E. Edwards.
Photosynthetic characteristics of C3-C4 intermediate Flaveria species. II. Kinetic properties of phospho-enolpyruvate carboxylase from C3, C4 and C3-C4 intermediate species.
Plant Cell Physiol. 24: 1387-1393. 1983.
74.
Nakamoto, H. and G. E. Edwards.
Dark activation of maize leaf NADP-malate dehydrogenase and pyruvate, orthophosphate dikinase in vivo under anaerobic conditions.
Plant Sci. Lett. 32: 139-146. 1983.
75.
Nakamoto, H. and G. E. Edwards.
Influence of environmental factors on the light activation of pyruvate, Pi dikinase and NADP-malate dehydrogenase in maize.
Aust. J. Plant Physiol. 10: 279-289. 1983.
76.
Nakamoto, H. and G. E. Edwards.
Control of the activation/inactivation of pyruvate, Pi dikinase from the C4 plant maize by adenylate energy charge, pyruvate, and analogs of pyruvate.
Biochem. Biophys. Res. Commun. 115: 673-679. 1983.
77.
Ku, M. S. B., R. K. Monson, R. O. Littlejohn, H. Nakamoto, D. B. Fisher and G. E. Edwards.
Photosynthetic characteristics of C3-C4 intermediate Flaveria species. I. Leaf anatomy, photosynthetic responses to O2 and CO2, and activities of key enzymes in the C3 and C4 pathways.
Plant Physiol. 71: 944-948. 1983.
78.
Nakamoto, H. and G. E. Edwards.
Influence of oxygen and temperature on the dark inactivation of pyruvate, orthophosphate dikinase and NADP-malate dehydrogenase in maize.
Plant Physiol. 71: 568-573. 1983.
79.
Nakamoto, H., M. S. B. Ku and G. E. Edwards.
Inhibition of C4 photosynthesis by (benzamidooxy)acetic acid.
Photosynth. Res. 3: 293-305. 1982.
80.
Nakamoto, H. and T. Sugiyama.
Partial characterization of the in vitro activation of inactive pyruvate, Pi dikinase from darkened maize leaves.
Plant Physiol. 69: 749-753. 1982.