Publications

Articles

Toyota M (2024)
Conservation of Long-Range Signaling in Land Plants via Glutamate Receptor–Like Channels. Plant and Cell Physiology 65(4): 657-659
Kuroiwa F, Suda H, Yabuki M, Atsuzawa K, Yamaguchi H, Toyota M, Kaneko Y, Yamashita S, Takahashi S, Tozawa Y (2024)
Cell-free translation system with artificial lipid-monolayer particles as a unique tool for characterizing lipid-monolayer binding proteins. Bioscience, Biotechnology, and Biochemistry zbae026
Itani A, Masuo S, Yamamoto R, Serizawa T, Fukasawa Y, Takaya N, Toyota M, Betsuyaku S, Takeshita N (2023)
Local calcium signal transmission in mycelial network exhibits decentralized stress responses. PNAS Nexs 2:pgad012
Aratani Y, Uemura T, Hagihara T, Matsui K, Toyota M (2023)
Green leaf volatile sensory calcium transduction in Arabidopsis . Nature Communications 14.6236
Nishimura T, Mori S, Shikata H, Nakamura M, Hashiguchi Y, Abe Y, Hagihara T, Yoshikawa H Y, Toyota M, Terao Morita M (2023)
Cell polarity linked to gravity sensing is generated by LZY translocation from statoliths to the plasma membrane . Science 10.1126
Tsugawa S, Miyake Y, Okamoto K, Toyota M, Yagi H, Terao Morita M, Hara-Nishimura I, Demura T, Ueda H (2023)
Shoot gravitropism and organ straightening cooperate to arrive at a mechanically favorable shape in Arabidopsis . Scientific Reports 13(1): 11165
Hagihara T, Mano H, Miura T, Hasebe M, Toyota M (2022)
Calcium-mediated rapid movements defend against herbivorous insects in Mimosa pudica. Nature Communications 13: 6412
Toyota M, Betsuyaku S (2022)
In vivo imaging enables understanding of seamless plant defense responses to wounding and pathogen attack. Plant and Cell Physiology 63: 1391-1404
Saijo Y, Betsuyaku S, Toyota M, Tsuda K (2022)
Continuous extension of plant biotic interaction research. Plant and Cell Physiology 63: 1321-1323
Suda H, Toyota M (2022)
Integration of long-range signals in plants: A model for wound-induced Ca2+, electrical, ROS, and glutamate waves Current Opinion in Plant Biology 69: 102270
Matsumura M, Nomoto M, Itaya T, Aratani Y, Iwamoto M, Matsuura T, Hayashi Y, Mori T, Skelly MJ, Yamamoto YY, Kinoshita T, Mori IC, Suzuki T, Betsuyaku S, Spoel SH, Toyota M, Tada Y (2022)
Mechanosensory trichome cells evoke a mechanical stimuli-induced immune response in Arabidopsis thaliana. Nature Communications 113:1216.
Chakraborty S, Toyota M, Moeder W, Chin K, Fortuna A, Champigny M, Vanneste S, Gilroy S, Beeckman T, Nambara E, Yoshioka K (2021)
CYCLIC NUCLEOTIDE-GATED ION CHANNEL 2 modulates auxin homeostasis and signaling. Plant Physiology 187, 1690-1703
Uemura T, Wang J, Aratani Y, Gilroy S, Toyota M (2021)
Wide-field, real-time imaging of local and systemic wound signals in Arabidopsis. Journal of Visualized Experiments 172, e62114
Takahashi K, Takahashi H, Furuichi T, Toyota M, Furutani-Seiki M, Kobayashi T, Watanabe-Takano H, Shinohara M, Numaga-Tomita T, Sakaue-Sawano A, Miyawaki A, Naruse K (2021)
Gravity sensing in plant and animal cells. NPJ Microgravity7:2.
Johns S, Hagihara T, Toyota M, Gilroy S (2021)
The fast and the furious: rapid long-range signaling in plants.Plant Physiology 185:694-706.
Kimura S, Hunter K, Vaahtera L, Tran HC, Citterico M, Vaattovaara A, Rokka A, Stolze SC, Harzen A, Meissner L, Wilkens MMT, Hamann T, Toyota M, Nakagami H, Wrzaczek M (2020)
CRK2 and C-terminal Phosphorylation of NADPH Oxidase RBOHD Regulate Reactive Oxygen Species Production in Arabidopsis. Plant Cell 32, 1063–1080
Abe Y, Meguriya K, Matsuzaki T, Sugiyama T, Yoshikawa HY, Morita MT, Toyota M (2020)
Micromanipulation of amyloplasts with optical tweezers in Arabidopsis stems. Plant Biotechnology 37, 405–415
Suda H, Mano H, Toyota M, Fukushima K, Mimura T, Tsutsui I, Hedrich R, Tamada Y, Hasebe M (2020)
Calcium dynamics during trap closure visualized in transgenic Venus flytrap. Nature Plants 6, 1219–1224
Hilleary R, Paez-Valencia J, Vens C, Toyota M, Palmgren M, Gilroy S (2020)
Tonoplast-localized Ca2+ pumps regulate Ca2+ signals during pattern-triggered immunity in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 117 (31), 18849-18857
Hagihara T, Toyota M (2020)
Mechanical Signaling in the Sensitive Plant Mimosa pudica L. Plants 9 (5), 587
Kimura S, Hunter K, Vaahtera L, Tran HC, Citterico M, Vaattovaara A, Rokka A, Stolze SC, Harzen A, Meissner L, Wilkens MMT, Hamann T, Toyota M, Nakagami H, Wrzaczek M (2020)
CRK2 and C-terminal Phosphorylation of NADPH Oxidase RBOHD Regulate Reactive Oxygen Species Production in Arabidopsis. Plant Cell 32, 1063-1080
Hunter K, Kimura S, Rokka A, Tran HC, Toyota M, Kukkonen JP, Wrzaczek M (2019)
CRK2 Enhances Salt Tolerance by Regulating Callose Deposition in Connection with PLDalpha1. Plant Physiology 180: 2004-2021
Toyota M, Spencer D, Sawai-Toyota S, Wang J, Zhang T, Koo A, Howe G, Gilroy S (2018)
Glutamate triggers long-distance, calcium-based plant defense signaling. Science: 361, 1112-1115.
Toyota M, Furuichi T, Iida H (2018)
Molecular Mechanisms of Mechanosensing and Mechanotransduction. Plant Biomechanics:375-397.
Vincent TR, Avramova M, Canham J, Higgins P, Bilkey N, Mugford ST, Pitino M, Toyota M, Gilroy S, Miller AJ, Hogenhout SA, Sanders D (2017)
Interplay of Plasma Membrane and Vacuolar Ion Channels, Together with BAK1, Elicits Rapid Cytosolic Calcium Elevations in Arabidopsis during Aphid Feeding. Plant Cell 29:1460-1479.
Taniguchi M, Furutani M, Nishimura T, Nakamura M, Fushita T, Iijima K, Baba K, Tanaka H, Toyota M, Tasaka M, Morita MT (2017)
The Arabidopsis LAZY1 Family Plays a Key Role in Gravity Signaling within Statocytes and in Branch Angle Control of Roots and Shoots. Plant Cell 29:1984-1999.
Lenglet A, Jaslan D, Toyota M, Mueller M, Muller T, Schonknecht G, Marten I, Gilroy S, Hedrich R, Farmer EE (2017)
Control of basal jasmonate signalling and defence through modulation of intracellular cation flux capacity. New Phytologist 216:1161-1169.
DeFalco TA, Toyota M, Phan V, Karia P, Moeder W, Gilroy S, Yoshioka K (2017)
Using GCaMP3 to Study Ca2+ Signaling in Nicotiana Species. Plant Cell Physiology 58:1173-1184.
Vincent TR, Canham J, Toyota M, Avramova M, Mugford ST, Gilroy S, Miller AJ, Hogenhout S, Sanders D (2017)
Real-time In Vivo Recording of Arabidopsis Calcium Signals During Insect Feeding Using a Fluorescent Biosensor. Journal of Visualized Experiments 126.
Mori A, Toyota M, Shimada M, Mekata M, Kurata T, Tasaka M, Morita MT (2016)
Isolation of New Gravitropic Mutants under Hypergravity Conditions. Frontiers in Plant Science 7, 1443
Alvarez AA, Han SW, Toyota M, Brillada C, Zheng J, Gilroy S, Rojas-Pierce M (2016)
Wortmannin-induced vacuole fusion enhances amyloplast dynamics in Arabidopsis zigzag1 hypocotyls. Journal of Experimental Botany 67:6459-6472.
Nakamura M, Toyota M, Tasaka M, Morita MT (2015)
Live cell imaging of cytoskeletal and organelle dynamics in gravity-sensing cells in plant gravitropism. Methods in Molecular Biology 1309:57-69.
Toyota M, Ikeda N, Tasaka M, Morita MT (2014)
Centrifuge microscopy to analyze the sedimentary movements of amyloplasts. Bio-protocol 4:e1229.
Tatsumi H, Toyota M, Furuichi T, Sokabe M (2014)
Calcium mobilizations in response to changes in the gravity vector in Arabidopsis seedlings: Possible cellular mechanisms. Plant Signaling & Behavior 9:e29099.
Tatsumi H, Furuichi T, Nakano M, Toyota M, Hayakawa K, Sokabe M, Iida H (2014)
Mechanosensitive channels are activated by stress in the actin stress fibres, and could be involved in gravity sensing in plants. Plant Biology 16 Suppl 1:18-22.
Kato T, Toyota M, Tasaka M, Morita MT (2014)
Chapter 1: Mini-History of Map-Based Cloning in Arabidopsis. Cleaved Amplified Polymorphic Sequences (CAPS) Markers in Plant Biology, ed Shavrukov Y (Nova Science Publishers, Inc., New York, USA), pp 1-20.
Iida H, Furuichi T, Nakano M, Toyota M, Sokabe M, Tatsumi H (2014)
New candidates for mechano-sensitive channels potentially involved in gravity sensing in Arabidopsis thaliana. Plant Biology 16 Suppl 1:39-42.
Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R (2014)
A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends in Plant Science 19:623-630.
Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S (2014)
Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc Natl Acad Sci USA 111:6497-6502.
Toyota M, Ikeda N, Sawai-Toyota S, Kato T, Gilroy S, Tasaka M, Morita MT (2013)
Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope. Plant Journal 76:648-660.
Toyota M, Gilroy S (2013)
Gravitropism and mechanical signaling in plants. American Journal of Botany 100:111-125.
Toyota M, Furuichi T, Sokabe M, Tatsumi H (2013)
Analyses of a Gravistimulation-Specific Ca2+ Signature in Arabidopsis using Parabolic Flights. Plant Physiology 163:543-554.
Toyota M, Matsuda K, Kakutani T, Morita MT, Tasaka M (2011)
Developmental changes in crossover frequency in Arabidopsis. Plant Journal 65:589-599.
Toyota M (2011)
Toward understanding the mechanisms of plant gravity (mechano) sensing. JAROS Review of Space Utilization 2010 22:3-1-30.
Nakamura M, Toyota M, Tasaka M, Morita MT (2011)
An Arabidopsis E3 Ligase, SHOOT GRAVITROPISM9, Modulates the Interaction between Statoliths and F-Actin in Gravity Sensing. Plant Cell 23:1830-1848.
Tatsumi H, Toyota M, Furuichi T, Sokabe M (2009)
The molecular mechanism of the gravi-response in Arabidopsis seedlings. Space Utilization Research 25:4-5.
Toyota M, Furuichi T, Tatsumi H, Sokabe M (2008)
Critical consideration on the relationship between auxin transport and calcium transients in gravity perception of Arabidopsis seedlings. Plant Signaling & Behavior 3:521-524.
Toyota M, Furuichi T, Tatsumi H, Sokabe M (2008)
Cytoplasmic calcium increases in response to changes in the gravity vector in hypocotyls and petioles of Arabidopsis seedlings. Plant Physiology 146:505-514.
Toyota M, Furuichi T, Tatsumi H, Sokabe M (2007)
Hypergravity stimulation induces changes in intracellular calcium concentration in Arabidopsis seedlings. Adv Space Res 39:1190-1197.

Japanese Articles

豊田正嗣 (2023)
蛍光バイオセンサーによるオジギソウの虫害防御運動シグナルの解明, 植物の生長調節 ,58:148-154.
上村卓也, 豊田正嗣 (2022)
植物の長距離・高速シグナルのリアルタイムイメージング, 生物工学会誌 100 (7):363-366.
豊田正嗣 (2021)
生物の長距離・高速Ca2+シグナル, 生物物理 62 (1):56-57.
豊田正嗣 (2020)
若手研究者の現状 ―アメリカでの苦悩と挑戦― 植物の生長調節 55:70-73.
豊田正嗣 (2020)
植物が傷つけられたことを感じて,全身に情報を伝える仕組み グルタミン酸の新しい機能. 化学と生物 58 (2):70-72.
豊田正嗣 (2019)
植物の全身カルシウムイメージング. アグリバイオ 3:23-27.
豊田正嗣 (2019)
グルタミン酸はカルシウムシグナルを介して植物の全身性傷害防御を引き起こす. バイオサイエンスとインダストリー 77:134-135.
豊田正嗣 (2019)
植物の全身を流れる高速シグナルを見る. 日経バイオテク 902:44-46.
豊田正嗣 (2019)
「かじられた!」とぺんぺん草もシグナルを送る. Nextcom 39:42-43.
豊田正嗣 (2018)
植物が傷つけられたことを全身へ伝えるしくみを解明!. 月刊「化学」 73:73.
豊田正嗣 (2018)
グルタミン酸とカルシウムシグナルを介した傷害応答. 植物の生長調節 53:146-151.
豊田正嗣 (2015)
第10章 「重力感知のメカノバイオロジーⅢ:植物細胞」. メカノバイオロジー: 細胞が力を感じ応答する仕組み (DOJIN BIOSCIENCE SERIES) (曽我部正博 編) 化学同人:pp. 125-139... 111:6497-6502.
豊田正嗣, 森田(寺尾)美代, 池田憲文, 田坂昌生 (2012)
重力感受をライブで視るための新しい顕微鏡技術. Plant Morphology 24:23-32.
豊田正嗣 (2011)
第3章 植物の重力(機械)刺激受容機構の解明に向けて. JAROS 宇宙環境利用の展望:1-30.
豊田正嗣, 森田(寺尾)美代 (2010)
植物の重力感受機構モデル~デンプン平衡石仮説~の再検証. 生化学 82:730-734.